18 research outputs found

    ALTERNATIVE SELECTION FUNCTIONS FOR INFORMATION SET MONTE CARLO TREE SEARCH

    Get PDF
    We evaluate the performance of various selection methods for the Monte Carlo Tree Search algorithm in two-player zero-sum extensive-form games with imperfect information. We compare the standard Upper Confident Bounds applied to Trees (UCT) along with the less common Exponential Weights for Exploration and Exploitation (Exp3) and novel Regret matching (RM) selection in two distinct imperfect information games: Imperfect Information Goofspiel and Phantom Tic-Tac-Toe. We show that UCT after initial fast convergence towards a Nash equilibrium computes increasingly worse strategies after some point in time. This is not the case with Exp3 and RM, which also show superior performance in head-to-head matches

    Biosignals as an Advanced Man-Machine Interface

    Get PDF
    As is known for centuries, humans exhibit an electrical profile. This profile is altered through various physiological processes, which can be measured through biosignals; e.g., electromyography (EMG) and electrodermal activity (EDA). These biosignals can reveal our emotions and, as such, can serve as an advanced man-machine interface (MMI) for empathic consumer products. However, such an MMI requires the correct classification of biosignals to emotion classes. This paper explores the use of EDA and three facial EMG signals to determine neutral, positive, negative, and mixed emotions, using recordings of 24 people. A range of techniques is tested, which resulted in a generic framework for automated emotion classification with up to 61.31% correct classification of the four emotion classes, without the need of personal profiles. Among various other directives for future research, the results emphasize the need for both personalized biosignal-profiles and the recording of multiple biosignals in parallel

    Avast-CTU Public CAPE Dataset

    Full text link
    There is a limited amount of publicly available data to support research in malware analysis technology. Particularly, there are virtually no publicly available datasets generated from rich sandboxes such as Cuckoo/CAPE. The benefit of using dynamic sandboxes is the realistic simulation of file execution in the target machine and obtaining a log of such execution. The machine can be infected by malware hence there is a good chance of capturing the malicious behavior in the execution logs, thus allowing researchers to study such behavior in detail. Although the subsequent analysis of log information is extensively covered in industrial cybersecurity backends, to our knowledge there has been only limited effort invested in academia to advance such log analysis capabilities using cutting edge techniques. We make this sample dataset available to support designing new machine learning methods for malware detection, especially for automatic detection of generic malicious behavior. The dataset has been collected in cooperation between Avast Software and Czech Technical University - AI Center (AIC)

    Counterfactual Regret Minimization in Sequential Security Games

    No full text
    Many real world security problems can be modelled as finite zero-sum games with structured sequential strategies and limited interactions between the players. An abstract class of games unifying these models are the normal-form games with sequential strategies (NFGSS). We show that all games from this class can be modelled as well-formed imperfect-recall extensive-form games and consequently can be solved by counterfactual regret minimization. We propose an adaptation of the CFR+ algorithm for NFGSS and compare its performance to the standard methods based on linear programming and incremental game generation. We validate our approach on two security-inspired domains. We show that with a negligible loss in precision, CFR+ can compute a Nash equilibrium with five times less computation than its competitors

    Online Monte Carlo Counterfactual Regret Minimization for Search in Imperfect Information Games

    No full text
    Online search in games has been a core interest of artificial intelligence. Search in imperfect information games (e.g., Poker, Bridge, Skat) is particularly challenging due to the complexities introduced by hidden information. In this pa-per, we present Online Outcome Sampling, an online search variant of Monte Carlo Counterfactual Regret Minimization, which preserves its convergence to Nash equilibrium. We show that OOS can overcome the problem of non-locality encountered by previous search algorithms and perform well against its worst-case opponents. We show that exploitabil-ity of the strategies played by OOS decreases as the amount of search time increases, and that preexisting Information Set Monte Carlo tree search (ISMCTS) can get more ex-ploitable over time. In head-to-head play, OOS outperforms ISMCTS in games where non-locality plays a significant role, given a sufficient computation time per move. Categories and Subject Descriptor

    Path Hopping: An MTD Strategy for Long-Term Quantum-Safe Communication

    No full text
    Moving target defense (MTD) strategies have been widely studied for securing computer systems. We consider using MTD strategies to provide long-term cryptographic security for message transmission against an eavesdropping adversary who has access to a quantum computer. In such a setting, today’s widely used cryptographic systems including Diffie-Hellman key agreement protocol and RSA cryptosystem will be insecure and alternative solutions are needed. We will use a physical assumption, existence of multiple communication paths between the sender and the receiver, as the basis of security, and propose a cryptographic system that uses this assumption and an MTD strategy to guarantee efficient long-term information theoretic security even when only a single path is not eavesdropped. Following the approach of Maleki et al., we model the system using a Markov chain, derive its transition probabilities, propose two security measures, and prove results that show how to calculate these measures using transition probabilities. We define two types of attackers that we call risk-taking and risk-averse and compute our proposed measures for the two types of adversaries for a concrete MTD strategy. We will use numerical analysis to study tradeoffs between system parameters, discuss our results, and propose directions for future research
    corecore